Fact vs. Fiction
Gigabit Wi-Fi 802.11ac
Webinar Overview

- The next major development in wireless LAN technologies – 802.11ac
- Features, benefits, and limitations
- Availability and timelines
- Real-world throughput expectations
- Migration planning, requirements, and related costs
- Gigabit Wi-Fi use cases
- Setting expectations for the enterprise
Our Speakers for Today

Dorothy Stanley
- Head of Standards Strategy, Aruba Networks
- Chair IEEE 802.11v, IEEE 802.11Revmb
- Liaison IEEE 802.11 to IETF
- Vice-chair Wi-Fi Alliance Security Marketing, Security Technical and Wireless Network Management Marketing Task Groups

Craig Mathias
- Founder (1991) and Principal with Farpoint Group
- Advisory services for wireless and mobile
- Member, IEEE
- Advisory Board Member for Interop, Co-Chair of Mobile Connect, and Analyst Partner at 4G World
- Columns for Information Week and TechTarget
- Blog at Network World
Standards Review
Dorothy Stanley
11ac Standards Discussion

1. IEEE P802.11ac – Project Definition, Scope & Schedule
2. Benefits: Usage Models & Application Environments
3. Key Technical Components
4. Summary
IEEE P802.11ac Basics

Title: Enhancements for Very High Throughput for operation in bands below 6GHz

Scope: Modifications to both the 802.11 physical layers (PHY) and the 802.11 Medium Access Control Layer (MAC)

- *At least 1 Gbps* Multi-station (STA) throughput and a maximum single link throughput of at least 500 Mbps.
- 6 GHz below carrier frequency operation *excluding 2.4 GHz*
- *Backward compatible* and coexistence with legacy IEEE802.11 devices in the 5 GHz unlicensed band.

Project Purpose: Significantly higher throughput for existing WLAN application areas and to enable new market segments for operation below 6 GHz including distribution of multiple multimedia/data streams.

Source: P802.11ac Project Authorization Request (PAR)
IEEE Standards Development: Process Flow – 802.11ac

Idea

2008

Project Approval Process

Develop Draft Standard in Working Group

Sponsor Ballot

IEEE SA Standards Board Approval

Publish Standard

Standard is Active; can be transferred to Inactive status, reviewed every 10 years

2008 Oct

Maximum of 4 years, + extensions

2009-2012

2013

Dec 2013

Early 2014

802.11ac Dates

An aside: 802.11ad ≠ 802.11ac

• IEEE 802.11ad:
 ▸ 60GHz specification
 ▸ Appropriate for shorter range in-room use cases
 ▸ Gigabit data rates
 ▸ Expected approval in Dec 2012
802.11ac Categories of Usage

- Wireless Display
- In Home Distribution of HDTV and other content
- Rapid Upload/Download of large files to/from server
- Backhaul Traffic (e.g. Mesh, Point-to-Point)
- Campus / Auditorium deployments
- Manufacturing Floor Automation

Source:
also see:
https://mentor.ieee.org/802.11/dcn/09/11-09-0161-02-00ac-802-11ac-usage-model-document.ppt
Example: Video requirements

<table>
<thead>
<tr>
<th>Video type</th>
<th>Description</th>
<th>Rate</th>
<th>Packet error rate</th>
<th>Jitter</th>
<th>Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncompressed</td>
<td>720p (RGB) 1280x720 pixels; 24 bits/pixel, 60 frame/sec</td>
<td>1.3 Gbps</td>
<td>10^{-8}</td>
<td>5 msec</td>
<td>5 msec</td>
</tr>
<tr>
<td></td>
<td>1080i (RGB) 1920x1080/2 pixels; 24 bits/pixel, 60 frame/sec</td>
<td>1.5 Gbps</td>
<td>10^{-8}</td>
<td>5 msec</td>
<td>5 msec</td>
</tr>
<tr>
<td></td>
<td>1080p (YCrCb) 1920x720 pixel; 24 bits/pixel, 60 frame/sec</td>
<td>1.5 Gbps</td>
<td>10^{-8}</td>
<td>5 msec</td>
<td>5 msec</td>
</tr>
<tr>
<td></td>
<td>1080p (RGB) 1920x720 pixel; 24 bits/pixel, 60 frame/sec</td>
<td>3.0 Gbps</td>
<td>10^{-8}</td>
<td>5 msec</td>
<td>5 msec</td>
</tr>
<tr>
<td>Lightly Compressed</td>
<td>Motion JPEG2000</td>
<td>150 Mbps</td>
<td>10^{-7}</td>
<td>10 msec</td>
<td>10 msec</td>
</tr>
<tr>
<td></td>
<td>H.264</td>
<td>70 - 200 Mbps</td>
<td>10^{-7} 10^{-8}</td>
<td>20 msec</td>
<td>20 msec</td>
</tr>
<tr>
<td>Compressed</td>
<td>Blu-ray™</td>
<td>50 Mbps</td>
<td>10^{-7}</td>
<td>20 msec</td>
<td>20 msec</td>
</tr>
<tr>
<td></td>
<td>HD MPEG2</td>
<td>20 Mbps</td>
<td>$3x10^{-7}$</td>
<td>20 msec</td>
<td>20 msec</td>
</tr>
</tbody>
</table>
Key Technical Components

1. **Wider channels**: 80 MHz & 160 MHz channel bandwidths

2. **New modulation & coding**: 256-QAM, rate $\frac{3}{4}$ and $\frac{5}{6}$, added as optional modes

3. **More spatial streams**: Up to 8 (had 4 in 802.11n)

4. **Multi-user MIMO** (MU-MIMO)

Source: IEEE 802.11ac framework document, see
https://mentor.ieee.org/802.11/dcn/09/11-09-0992-21-00ac-proposed-specification-framework-for-tgac.doc
80 MHz and 160 MHz channel bandwidths

- 80 MHz mandatory, 160 MHz optional

- 80 MHz channels are ‘new’ channels:
 - Like two 40 MHz channels but with tones in the middle filled in

- 160 MHz channels are defined as two 80 MHz channels
 - May be contiguous or non-contiguous
20/40 and 80/160 Channelization

Channels defined for 5 GHz bands (U.S. regulations), showing 20, 40, 80 and 160 MHz channels (channel 144 is now allowed in the U.S. for one additional 20 MHz, one 40 MHz and one 80 MHz channel)

US U-NII I and U-NII II bands
U-NII I: 5150-5250 MHz (indoors only)
U-NII 2: 5250-5350 MHz
8x 20 MHz channels
4x 40 MHz channels
2x 80 MHz channels
1x 160 MHz channel
U-NII II requires DFS (& TPC if over 500mW / 27dBm EIRP)

US intermediate band (U-NII 2 extended)
5450-5725 MHz
12x 20 MHz channels
6x 40 MHz channels
3x 80 MHz channels
1x 160 MHz channel
• Requires DFS (& TPC if over 500mW / 27dBm EIRP)
• 5600-5650 MHz is used by weather radars and is temporarily not available in the U.S.

US-only U-NII 3 / ISM band
5725-5825 MHz
5x 20 MHz channels
2x 40 MHz channels
1x 80 MHz channel
• Slightly different rules apply for channel 165 in ISM spectrum
Deployment Considerations – RF Planning

• 160MHz
 ▸ It is unlikely we will see wide adoption of 160MHz channels, but no doubt some special applications will emerge to use this option.

• 80MHz
 ▸ Five available 80MHz channels (three require DFS) should be sufficient for overlapping access points to provide contiguous coverage

• <80MHz:
 ▸ Some networks will have reasons to prefer a higher number of smaller-width channels
Modulation

 - Compared to 802.11n: 64-QAM 5/6
- Provides a higher ‘raw data’ top speed
- Higher order modulation leverages advances in radio technology, to better distinguish constellation points
- All the earlier options are still available, used if SNR is too low to sustain the highest rates.

Constellation diagrams for 16-, 64-, 256-QAM
More Spatial Streams

• Up to 8 spatial streams in both single-user (SU) and multi-user (MU) (was 4 max in 802.11n)
 • 8SS performance will only be possible where both devices have 8 antennas.
 • Without innovative antenna designs, this probably precludes handheld devices, but access points, set top boxes and the like will be able to use multiple streams.

• Adding spatial streams increases throughput proportionally. Assuming multipath conditions are favorable,
 • Two streams offer double the throughput of a single stream
 • Eight streams increase throughput eight-fold
11ac Multi-User MIMO

• MIMO:
 • 802.11n Introduced MIMO (Multiple Input, Multiple Output) spatial division multiplexing for dramatic improvements in data rate

• Multi-User MIMO
 • Multiple devices, each with potentially multiple antennas, transmit or receive independent data streams simultaneously
 • Requires beamforming techniques to steer signal maxima over the desired clients while minimizing interference at other clients.
<table>
<thead>
<tr>
<th>Channel bandwidth</th>
<th>Transmit - Receive antennas</th>
<th>Modulation and coding etc</th>
<th>Typical client scenario</th>
<th>Throughput (individual link rate)</th>
<th>Throughput (aggregate link rate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 MHz</td>
<td>1x1</td>
<td>256-QAM 5/6, short guard interval</td>
<td>Smartphone</td>
<td>433 Mbps</td>
<td>433 Mbps</td>
</tr>
<tr>
<td>80 MHz</td>
<td>2x2</td>
<td>256-QAM 5/6, short guard interval</td>
<td>Tablet, PC</td>
<td>867 Mbps</td>
<td>867 Mbps</td>
</tr>
<tr>
<td>160 MHz</td>
<td>1x1</td>
<td>256-QAM 5/6, short guard interval</td>
<td>Smartphone</td>
<td>867 Mbps</td>
<td>867 Mbps</td>
</tr>
<tr>
<td>160 MHz</td>
<td>2x2</td>
<td>256-QAM 5/6, short guard interval</td>
<td>Tablet, PC</td>
<td>1.73 Gbps</td>
<td>1.73 Gbps</td>
</tr>
<tr>
<td>160 MHz</td>
<td>4x Tx AP, 4 clients of 1x Rx</td>
<td>256-QAM 5/6, short guard interval</td>
<td>Multiple smartphones</td>
<td>867 Mbps per client</td>
<td>3.47 Gbps</td>
</tr>
<tr>
<td>160 MHz</td>
<td>8x Tx AP, 4 clients with total of 8x Rx</td>
<td>256-QAM 5/6, short guard interval</td>
<td>Digital TV, set-top box, tablet, PC, smartphone</td>
<td>867 Mbps to two 1x clients 1.73 Gbps to one 2x client 3.47 Gbps to one 4x client</td>
<td>6.93 Gbps</td>
</tr>
<tr>
<td>160 MHz</td>
<td>8x Tx AP, 4 clients of 2x Rx</td>
<td>256-QAM 5/6, short guard interval</td>
<td>Multiple set-top boxes, PCs</td>
<td>1.73 Gbps to each client</td>
<td>6.93 Gbps</td>
</tr>
</tbody>
</table>
802.11ac vs 802.11n

<table>
<thead>
<tr>
<th>802.11ac enhancement</th>
<th>Notes</th>
<th>Improvement over current 802.11n</th>
<th>Max theoretical improvement over 802.11n</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 MHz, 160MHz channel</td>
<td>Over 40MHz in 802.11n (but how often is a 160MHz channel practical?)</td>
<td>~ 2.1x (80MHz)</td>
<td>4.2x (160MHz)</td>
</tr>
<tr>
<td>8 Spatial streams</td>
<td>Over max 4 spatial streams in 802.11n (but only just seeing 3SS 802.11n in the field)</td>
<td>~ 2x (4SS vs 2SS)</td>
<td>1x (4SS vs 4SS without MU-MIMO)</td>
</tr>
<tr>
<td>256-QAM 3/4 and 5/6 modulation</td>
<td>Over 64-QAM 5/6 in 802.11n</td>
<td>~ 1.2, 1.33x</td>
<td>~ 1.2, 1.33x</td>
</tr>
<tr>
<td>Beamforming (implementable BF)</td>
<td>No explicit BF in current 802.11n systems due to complexity</td>
<td>~1.5x</td>
<td>~2x</td>
</tr>
<tr>
<td>Multi-user downlink MIMO</td>
<td>Over single-user MIMO in 802.11n</td>
<td>~1.5x</td>
<td>~2x</td>
</tr>
<tr>
<td>Total improvement</td>
<td></td>
<td>~10x</td>
<td>~20x</td>
</tr>
</tbody>
</table>

(estimates only - performance depends on clients, traffic profiles, neighboring WLANs etc.)
Wi-Fi Alliance – Work is underway for Draft 11ac Certification

- Expected to be available 1H 2013
- Based on IEEE 802.11ac draft
- Followed by “Final ac”
Summary: 11ac – 5GHz VHT

- **What 802.11ac Offers:**
 - Higher bandwidth, enable new applications
- **Benefits:**
 - New Usage Models & Application Environments
- **Key Technical Components:**
 - Significant improvements from wider channels, higher-rate modulation and higher-level MIMO
 - Together they offer a top speed that is >10x that of 802.11n
- **Certification Status - 2013**
802.11ac and the Enterprise

Craig J. Mathias • Principal
Topics for Discussion…

- Why demand for Wi-Fi capacity will continue to grow rapidly
- How 802.11ac will change the enterprise wireless LAN
 - Evolution, not revolution
- It’s not just about the PHY…
 - The continuing importance of architecture and management
- Trends and timelines
- Alternatives for the enterprise now
- Conclusions and recommendations
Wi-Fi Forever

- First a toy, then a tool, now part of the culture – *globally!*
- *No* competition from any other wireless technology
- Enterprise, personal, public-space (hotspot and metro-scale)
- Voice, data, video – the mobile Triple Play
- 802.11n removed the last barrier for enterprise installations
 - All other issues have been addressed for essentially all industries and applications
- **Key differentiation in enterprise-class products is in architecture and management**
 - But AP/radio implementations can still make a big difference!
- **Next – gigabit-class WLANs**
 - 802.11ac and ad
- Today’s enterprise goal: *capacity*, not just coverage or throughput alone
 - And *reliability* and *scalability*
Wi-Fi as Default/Primary Access
Venues, Subscriber Units, Applications

Residential

Public-Space

Enterprise

PC

Handset

Other Devices and Applications (e.g., M2M)

Voice

Data

Video

Source: Farpoint Group
Wi-Fi: Key Trends

Device Proliferation
• Handsets
• Notebooks
• Tablets
• Users with *multiple* devices

Wireless as an *Expectation* and *Requirement*
• Default/primary access
• All venues
• All applications – *extreme* diversity
• Staff, customer, and guest use
• Social networks, media access
• Evolution to gigabit (802.11ac/ad)

Increasing *Dependence* on Wi-Fi
• Core driver: *convenience*
• *Capacity*, not just throughput
• Mobile Triple Play
• *Density*: users drive infrastructure
• *Coverage* - everywhere
• Complementary to cellular
 • *Cellular offload*

Source: Farpoint Group
802.11ac – Breaking the Gigabit Barrier

Gratuitous clipart - Please ignore

<table>
<thead>
<tr>
<th>Technology</th>
<th>Year</th>
<th>Speed (Mbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proprietary</td>
<td>1989</td>
<td><1</td>
</tr>
<tr>
<td>802.11 1997</td>
<td>1991</td>
<td>1-2</td>
</tr>
<tr>
<td>802.11b</td>
<td>1999</td>
<td>11</td>
</tr>
<tr>
<td>802.11g/a</td>
<td>2003</td>
<td>54</td>
</tr>
<tr>
<td>802.11n</td>
<td>2009</td>
<td>300/450/600</td>
</tr>
<tr>
<td>802.11ac</td>
<td>2013</td>
<td>433/866/1300</td>
</tr>
<tr>
<td>802.11ad</td>
<td>2013</td>
<td>7-28</td>
</tr>
</tbody>
</table>

Source: Farpoint Group
WLANs – Key Requirements

Throughput
- Minimize TCO
- IEEE 802.11n/MIMO To 450 Mbps (three-stream .11n)
 NB: rate vs. range
 Next: 802.11ac/ad

Reliability
- Integrity
- Fault-Tolerance

Capacity
- Traffic Volume
- Responsiveness

Scalability
- Growth
- Change
- Flexibility

Time-Bounded
- Voice over IP over Wi-Fi (VoFi) and video (VidFi)

Management and Assurance
- Minimize TCO
- CapEx OpEx
- Configuration Policies
- Monitoring Control

Security
- 802.11/Wi-Fi
- IDS/IPS
- VPNs/802.1X (etc.)

Location and Tracking
- Increasing applications

Source: Farpoint Group
It’s Not Really About Throughput – It’s About **Capacity**

Dense Deployments
- Maximize channel utilization
- Maximize throughput/reliability by minimizing range

RF Management Techniques
- Beamforming
- Beamsteering
- Bandsteering
- Auto channel/power selection
- Spectral analysis

Traffic prioritization/Airtime fairness
Load balancing

Source: Farpoint Group
Architecture Matters: The “Planes” Model of Enterprise WLAN Systems

- Increasing data rate/duty cycle
 - Distributed
 - Centralized
 - Capacity
 - Hybrid/Adaptive
 - "OS" – traffic flow
 - Resource management
 - Policy Implementation

- Data
- Control
- Management

Source: Farpoint Group
802.11ac Unknowns

5 GHz. Bands
- Relatively uncrowded today…
- But tomorrow?

80- and 80x2/160-MHz. Channels
- Range, rate vs. range; effective throughput
- Increasing interference?
- Re-farming current channel plans

Evolution
- 802.11n backwards-compatible performance
- Vendor coexistence/migration strategies
- Varying quality of PHY and MAC implementations

Source: Farpoint Group
Scalability: Networks (of any form) Only Grow…

Number Of Users

Traffic Volumes

Transmit Duty Cycles

Capacity

Time-Boundedness

Coverage/Scalable Growth

Number of Applications

TCO/ROI

Reliability

Ever-Growing Demands on Wireless (and wired) Networks

Source: Farpoint Group
802.11ac Adoption Timeline

- **First 802.11ac products**: 2012
- **First enterprise-class products**: 2013
- **Standard finished Wi-Fi Alliance specification**: 2015
- **Critical mass – enterprise infrastructure**: 2015
- **Critical mass – clients**: 2015
- **Replacement of 802.11n**: 2018

Source: Farpoint Group
What Should the Enterprise Do Now?

- Wired network - audit
- Coexistence/migration planning with vendor
- Begin the operations planning process
- Continue to deploy 802.11n
- Budgetary analysis
- Non-disruptive, gradual upgrade strategy

Source: Farpoint Group
Conclusions (for now…)

- **802.11ac will replace 802.11n** – but not for many years
- **802.11n projects should continue to be evaluated (and deployed)** based on current ROI
- **Talk with your vendor** about coexistence/migration plans
- And remember: **there’s more to successful WLAN deployments than radios!**
Questions

For more information contact
Aruba Networks: info@arubanetworks.com
Farpoint Group: craig@farpointgroup.com