ARUBA 518 SERIES RUGGEDIZED ACCESS POINTS

High performance Wi-Fi 6 (802.11ax) for harsh weather-protected and indoor environments

The hardened, Aruba 518 Series access point delivers high Wi-Fi 6 performance in harsh, weather-protected environments such as warehouses, industrial freezers or enclosures in extreme environments such as stadiums. It delivers 4x4:4SS MU-MIMO capability, Aruba’s advanced ClientMatch and integrated Bluetooth to enable Aruba location services.

Purpose-built to survive in the harshest outdoor environments, 518 Series APs withstand exposure to extreme high and low temperatures, persistent (non-precipitant) moisture, and are sealed to keep out airborne contaminants. All electrical interfaces include industrial strength surge protection.

Aruba Wi-Fi 6 access points provide high-performance connectivity in dense mobile and IoT environments. With maximum aggregate on air data rate of 3 Gbps (HE80/HE40), the 518 Series APs deliver the speed and reliability needed for demanding environments.

INCREDIBLE EFFICIENCY

The 518 Series APs are designed to optimize user experience by maximizing Wi-Fi efficiency and dramatically reducing airtime contention between clients.

Features include Uplink and Downlink Orthogonal Frequency Division Multiple Access (OFDMA), Downlink Multi-User MIMO (MU MIMO) and cellular co-location. With up to 4 spatial stream and 160 MHz channel capability, the 518 provides groundbreaking wireless capabilities for any application.

Read the Multi-User 802.11ax white paper for further information.

Advantages of OFDMA

This capability allows Aruba Wi-Fi 6 APs to handle multiple Wi-Fi 6 enabled clients simultaneously on a single radio. Channel utilization is optimized per transaction by matching allocated bandwidth in a channel to the offered user load.

Aruba Air Slice for Extended OFDMA Assurance

APs in controller-less mode (Instant) can provide SLA-grade performance by allocating RUs to specific traffic types. By combining Aruba’s Policy Enforcement Firewall (PEF) and Layer 7 deep packet inspection (DPI) to identify user roles and applications, the APs will dynamically allocate the bandwidth needed. Non-Wi-Fi 6 clients can also benefit.

Multi-User MIMO (MU-MIMO)

The 518 Series APs support downlink MU-MIMO similar to Wi-Fi 5 (802.11ac Wave 2) APs. With the introduction OFDMA in Wi-Fi 6, the overhead for this capability is reduced and MU-MIMO effectiveness is substantially improved for large client counts.

Wi-Fi 6 and MU-MIMO aware client optimization

Aruba’s patented AI powered ClientMatch technology ensures that all clients are attached to their best serving Access Point. Session metrics, network metrics, applications and client type are used to identify and maintain the best connection.

Aruba Advanced Cellular Coexistence (ACC)

The ACC feature uses built in filtering to automatically minimize the impact of interference of high power cellular base stations, in building distributed antenna systems as well as small cell and femtocell equipment.

Intelligent Power Monitoring (IPM)

Aruba APs continuously monitor and report hardware energy consumption. APs can be configured to enable or disable capabilities based on the available PoE power – ideal when wired switches have exhausted their power budget.
Green AP energy efficiency
Aruba Wi-Fi 6 APs utilize analytics from Aruba Central to automatically transition in and out of a sleep mode.

IOT PLATFORM CAPABILITIES
Aruba Wi-Fi 6 APs include an integrated Bluetooth 5 and 802.15.4 radio (for Zigbee support) to simplify deploying and managing IoT-based location services, asset tracking services, security solutions and IoT sensors. This allows organizations to leverage the 518 as an IoT platform, which eliminates the need for an overlay infrastructure and additional IT resources.

Target Wake Time (TWT)
Ideal for IoT solutions that communicate infrequently, this Wi-Fi 6 capability allows IoT devices to use 802.11ax protocol. TWT coordinates with client devices to allow them to sleep for extended periods and use shorter wake times to communicate before returning to sleep. This substantially extends the useful operating life of Wi-Fi 6 based battery powered sensors.

ARUBA SECURE INFRASTRUCTURE
The 518 Series is an integral part of Aruba’s zero trust security approach to help protect user authentication and wireless traffic. Select capabilities include:

WPA3 and Enhanced Open
With the introduction of WPA3 and Enhanced Open, a Wi-Fi 6 certified client will never send unencrypted traffic over the air. Even with an open authenticated network, Enhanced Open still provides strong encryption over the air.

In all Wi-Fi 6 user sessions, each user is uniquely encrypted and if they disconnect and reconnect, the encryption changes from session to session.

WPA2-MPSK
MPSK enables simpler passkey management for WPA2 devices – should the Wi-Fi password on one device change, no additional changes are needed for other devices. This feature is enabled when networks are deployed with ClearPass Policy Manager.

VPN Tunnels
In Remote AP (RAP) and IAP-VPN deployments, the Aruba 518 can be used to establish a secure SSL/IPSec VPN tunnel to a Mobility Controller that is configured as a VPN concentrator.

Trusted Platform Module (TPM)
For enhanced device assurance, all Aruba APs have an installed TPM for secure storage of credentials, keys and boot code.

SIMPLE AND SECURE ACCESS
To simplify policy enforcement, the Aruba 518 uses Aruba’s Policy Enforcement Firewall (PEF) to encapsulate all traffic from the AP to the Mobility Controller (gateway) for end-to-end encryption and inspection. Policies are applied based on context including user role, device type, application, and location. This reduces the manual configuration of SSIDs, VLANs, and ACLs. PEF also serves as the underlying technology for Aruba Dynamic Segmentation.

HIGH DENSITY CONNECTIVITY
Each 518 Series AP provides connectivity for a maximum of 512 associated clients per radio (1024 total).

Flexible Operation and Management
A unique feature of Aruba APs is the ability to operate in either controller-less or controller-based mode.

Controller-less (Instant) Mode
In controller-less mode, one AP serves as a virtual controller for the entire network. Learn more about Instant mode in this technology brief.

Mobility Controller Mode
For optimized network performance, roaming and security, APs tunnel all traffic to a mobility controller for central management of traffic forwarding, segmentation, encryption, and policy enforcement. Learn more in the ArubaOS datasheet.

Management Options
Available management choices include Aruba Central (cloud-based) or Aruba AirWave (multi-vendor, on prem) solutions.

For large installations across multiple sites, Aruba APs can be shipped and activated with Zero Touch Provisioning through Aruba Central or AirWave. This reduces deployment time, centralizes configuration, and provides inventory visibility.
ADDITIONAL WI-FI FEATURES

Transmit Beamforming (TxBF)
Increased signal reliability and range

Passpoint Release 2
Seamless cellular-to-Wi-Fi carryover for guests

Dynamic Frequency Selection (DFS)
Optimized use of available RF spectrum

Maximal Ratio Combining (MRC)
Improved receiver performance for multi antenna access points.

Cyclic Delay/Shift Diversity (CDD/CSD)
Enable use of multiple transmit antennas

Space-Time Block Coding (STBC)
Increased connection robustness

Low-Density Parity Check (LDPC)
High performance error detection and correction coding for enhanced receiver performance.

AP-518 SPECIFICATIONS

Hardware Variants
- AP-518
 - 5 GHz: Four RP-SMA connectors for external antenna operation
 - 2.4 GHz Two RP-SMA connectors for external antenna operation

Wi-Fi Radio Specifications
- AP type: Indoor Hardened, Wi-Fi 6 dual radio, 5 GHz 4x4 MIMO and 2.4 GHz 2x2 MIMO
- Software-configurable dual radio supports 5 GHz (Radio 0) and 2.4 GHz (Radio 1)

5 GHz:
- Four spatial stream Single User (SU) MIMO for up to 4.8 Gbps wireless data rate to individual 4SS HE160 Wi-Fi 6 client device (max)
- Two spatial stream Single User (SU) MIMO for up to 1.2 Gbps wireless data rate to individual 2SS HE80 Wi-Fi 6 client device (typical)
- Four spatial stream Multi User (MU) MIMO for up to 4.8 Gbps wireless data rate to up to four 1SS or two 2SS HE80 Wi-Fi 6 DL-MU-MIMO capable client devices simultaneously (max)

2.4 GHz:
- Two spatial stream Single User (SU) MIMO for up to 575 Mbps wireless data rate to individual 2SS HE40 Wi-Fi 6 client device (max)
- Two spatial stream Single User (SU) MIMO for up to 287 Mbps wireless data rate to individual 2SS HE20 Wi-Fi 6 client device (typical)
- Two spatial stream Multi User (MU) MIMO for up to 575 Mbps wireless data rate to up to two 1SS HE40 Wi-Fi 6 DL-MU-MIMO capable client devices simultaneously (max)
- Two spatial stream Multi User (MU) MIMO for up to 287 Mbps wireless data rate to up to two 1SS HE20 Wi-Fi 6 DL-MU-MIMO capable client devices simultaneously (typical)
- Support for up to 512 associated client devices per radio, and up to 16 BSSIDs per radio
- Supported frequency bands (country-specific restrictions apply):
 - 2.400 to 2.4835 GHz
 - 5.150 to 5.250 GHz
 - 5.250 to 5.350 GHz
 - 5.470 to 5.725 GHz
 - 5.725 to 5.850 GHz
 - 5.850 to 5.925 GHz
 - 5.825 to 5.875 GHz
- Available channels: Dependent on configured regulatory domain.
- Dynamic frequency selection (DFS) optimizes the use of available RF spectrum.
- Supported radio technologies:
 - 802.11b: Direct-sequence spread-spectrum (DSSS)
 - 802.11a/g/n/ac: Orthogonal frequency-division multiplexing (OFDM)
 - 802.11ax: Orthogonal frequency-division multiple access (OFDMA) with up to 16 resource units (RU)
- Supported modulation types:
 - 802.11b: BPSK, QPSK, CCK
 - 802.11a/g/n: BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM (proprietary extension)
 - 802.11ac: BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM, 1024 QAM (proprietary extension)
 - 802.11ax: BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM, 1024 QAM
• 802.11n high-throughput (HT) support: HT 20/40
• 802.11ac very high throughput (VHT) support: VHT 20/40/80/160
• 802.11ax high efficiency (HE) support: HE20/40/80/160
• Supported data rates (Mbps):
 - 802.11b: 1, 2, 5.5, 11
 - 802.11a/g: 6, 9, 12, 18, 24, 36, 48, 54
 - 802.11n (2.4GHz): 6.5 to 300 (MCS0 to MCS15, HT20 to HT40)
 - 802.11n (5GHz): 6.5 to 600 (MCS0 to MCS31, HT20 to HT40)
 - 802.11ac: (5 GHz): 6.5 to 3,467 (MCS0 to MCS9, NSS = 1 to 4 for VHT20 to VHT160)
 - 802.11ax (2.4GHz): 3.6 to 574 (MCS0 to MCS11, NSS = 1 to 2, HE20 to HE40)
 - 802.11ax (5GHz): 3.6 to 4803 (MCS0 to MCS11, NSS = 1 to 4, HE20 to HE160)
• 802.11n/ac packet aggregation: A-MPDU, A-MSDU
• Transmit power: Configurable in increments of 0.5 dBm
• Maximum (conducted) transmit power (limited by local regulatory requirements):
 - 2.4 GHz band: +22 dBm per chain, +25dBm aggregate (2x2)
 - 5 GHz band: +22 dBm per chain, +28dBm aggregate (4x4)
 - Note: conducted transmit power levels exclude antenna gain.
• Maximum EIRP (limited by local regulatory requirements):
 - 2.4 GHz band:
 - 518: 25.0dBm + Antenna Gain
 - 5 GHz band:
 - 518: 28.0dBm + Antenna Gain
• Advanced Cellular Coexistence (ACC) minimizes interference from cellular networks.
• Maximum ratio combining (MRC) for improved receiver performance.
• Cyclic delay/shift diversity (CDD/CSD) to enable the use of multiple transmit antennas
• Short guard interval for 20-MHz, 40-MHz, 80-MHz and 160-MHz channels.
• Space-time block coding (STBC) for increased range and improved reception.
• Low-density parity check (LDPC) for high-efficiency error correction and increased throughput.
• Transmit beam-forming (TxBF) for increased signal reliability and range.

POWER
• Worst-case power consumption from the AP: 25.6W
• Power sources sold separately
• Power over Ethernet (PoE+): 802.3at-compliant

ADDITIONAL INTERFACES
• E0: HPE SmartRate port (RJ-45)
 - Auto-sensing link speed (100/1000/2500BASE-T) and MDI/MDX
 - 2.5Gbps speed complies with NBase-T and 802.3bz specifications
 - PoE-PD: 48Vdc (nominal) 802.3af/at/bt (Class 3 or higher)
 - 802.3az Energy Efficient Ethernet (EEE)
• E1: 10/100/1000BASE-T (RJ-45)
 - Auto-sensing link speed and MDI/MDX
 - 802.3az Energy Efficient Ethernet (EEE)
• Link Aggregation (LACP) support between both network ports for redundancy and increased capacity
• Bluetooth 5 and 802.15.4 radio
 - 2.4 GHz
 - Bluetooth 5: up to 8dBm transmit power and -95dBm receive sensitivity
 - Zigbee: up to 8 dBm transmit power and -97dBm receive sensitivity
 - Up to 4dBm transmit power (class 2) and -91 dBm receive sensitivity
• Visual indicator (multi-color LED): For system and radio status
• Reset button: Factory reset (during device power up)
• USB-C console interface

MOUNTING
• Optional mounting kits:
 - AP-220-MNT-W1 are directly compatible
 - 270 Series outdoor AP mounts (AP-270-MNT-V1, AP-270-MNT-V2, AP-270-MNT-H1, AP-270-MNT-H2) are compatible when the AP-270-MNT-ADP adapter is utilized

MECHANICAL
AP-518
• Dimensions/weight (excluding mount):
 - 220mm (W) x 220 mm (D) x 75 mm (H)
 - 8.5” (W) x 8.5” (D) x 2.5” (H)
 - 1.5 kg/3.3 lbs
ENVIRONMENTAL

- Operating:
 - Temperature: -40° C to +55° C (-40° F to +140° F)
 - Humidity: 5% to 95% non-condensing internal to chassis.
- Storage and transportation:
 - Temperature: -40° C to +70° C (-40° F to +158° F)
 - Operating Altitude: 3,000 m
- Water and Dust
 - IP55
- Shock and Vibration ETSI 300-19-2-4

REGULATORY

- FCC/ISED
- CE Marked
- RED Directive 2014/53/EU
- EMC Directive 2014/30/EU
- Low Voltage Directive 2014/35/EU
- UL/IEC/EN 60950
- EN 60601-1-1, EN60601-1-2

For more country-specific regulatory information and approvals, please see your Aruba representative.

REGULATORY MODEL NUMBER

- AP-518: APIN0518

CERTIFICATIONS

- CB Scheme Safety, cTUVus
- UL2043 plenum rating
- Wi-Fi Alliance certified 802.11a/b/g/n/
- Wi-Fi CERTIFIED™ 6 (802.11ax)
- Wi-Fi CERTIFIED™ ac (with Wave 2 features)
- Passpoint® (Release 2) with ArubaOS and Instant

WARRANTY

- Limited Lifetime Warranty

MINIMUM OPERATING SYSTEM SOFTWARE

- ArubaOS & Aruba InstantOS 8.7.0.0
RF PERFORMANCE TABLE

<table>
<thead>
<tr>
<th>Frequency, Standard</th>
<th>Maximum transmit power (dBm) per transmit chain</th>
<th>Receiver sensitivity (dBm) per receive chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4GHz, 802.11b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Mbps</td>
<td>22</td>
<td>-97</td>
</tr>
<tr>
<td>11 Mbps</td>
<td>22</td>
<td>-89</td>
</tr>
<tr>
<td>2.4GHz, 802.11g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Mbps</td>
<td>22</td>
<td>-94</td>
</tr>
<tr>
<td>54 Mbps</td>
<td>20</td>
<td>-76</td>
</tr>
<tr>
<td>2.4GHz, 802.11n/ac HT20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCS0</td>
<td>22</td>
<td>-93</td>
</tr>
<tr>
<td>MCS8</td>
<td>19</td>
<td>-72</td>
</tr>
<tr>
<td>2.4GHz, 802.11ax HE20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCS0</td>
<td>22</td>
<td>-93</td>
</tr>
<tr>
<td>MCS11</td>
<td>17</td>
<td>-62</td>
</tr>
<tr>
<td>5GHz, 802.11a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Mbps</td>
<td>22</td>
<td>-95</td>
</tr>
<tr>
<td>54 Mbps</td>
<td>20</td>
<td>-76</td>
</tr>
<tr>
<td>5GHz, 802.11n/ac HT20/VHT20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCS0</td>
<td>22</td>
<td>-94</td>
</tr>
<tr>
<td>MCS8</td>
<td>19</td>
<td>-72</td>
</tr>
<tr>
<td>5GHz, 802.11n/ac HT40/VHT40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCS0</td>
<td>22</td>
<td>-92</td>
</tr>
<tr>
<td>MCS9</td>
<td>19</td>
<td>-68</td>
</tr>
<tr>
<td>5GHz, 802.11ac VHT80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCS0</td>
<td>22</td>
<td>-90</td>
</tr>
<tr>
<td>MCS9</td>
<td>19</td>
<td>-65</td>
</tr>
<tr>
<td>5GHz, 802.11ac VHT160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCS0</td>
<td>22</td>
<td>-84</td>
</tr>
<tr>
<td>MCS9</td>
<td>19</td>
<td>-59</td>
</tr>
<tr>
<td>5GHz, 802.11ax HE20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCS0</td>
<td>22</td>
<td>-94</td>
</tr>
<tr>
<td>MCS11</td>
<td>17</td>
<td>-62</td>
</tr>
<tr>
<td>5GHz, 802.11ax HE40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCS0</td>
<td>22</td>
<td>-91</td>
</tr>
<tr>
<td>MCS11</td>
<td>17</td>
<td>-60</td>
</tr>
<tr>
<td>5GHz, 802.11ax HE80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCS0</td>
<td>22</td>
<td>-87</td>
</tr>
<tr>
<td>MCS11</td>
<td>17</td>
<td>-57</td>
</tr>
<tr>
<td>5GHz, 802.11ax HE160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCS0</td>
<td>22</td>
<td>-85</td>
</tr>
<tr>
<td>MCS11</td>
<td>17</td>
<td>-53</td>
</tr>
</tbody>
</table>

Maximum capability of the hardware provided (excluding antenna gain). Maximum transmit power is limited by local regulatory settings.
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP-518 Unified Outdoor Access Points</td>
<td></td>
</tr>
<tr>
<td>R4G99A</td>
<td>Aruba AP-518 (EG) 802.11ax 2x2:2/4x4:4 Dual Radio 6xRPSMA Connectorized Indoor Hardened AP</td>
</tr>
<tr>
<td>R4H00A</td>
<td>Aruba AP-518 (IL) 802.11ax 2x2:2/4x4:4 Dual Radio 6xRPSMA Connectorized Indoor Hardened AP</td>
</tr>
<tr>
<td>R4H01A</td>
<td>Aruba AP-518 (JP) 802.11ax 2x2:2/4x4:4 Dual Radio 6xRPSMA Connectorized Indoor Hardened AP</td>
</tr>
<tr>
<td>R4H02A</td>
<td>Aruba AP-518 (RW) 802.11ax 2x2:2/4x4:4 Dual Radio 6xRPSMA Connectorized Indoor Hardened AP</td>
</tr>
<tr>
<td>R4H03A</td>
<td>Aruba AP-518 (US) 802.11ax 2x2:2/4x4:4 Dual Radio 6xRPSMA Connectorized Indoor Hardened AP</td>
</tr>
<tr>
<td>AP-518 Unified Outdoor Access Points FIPS/TAA</td>
<td></td>
</tr>
<tr>
<td>R4H04A</td>
<td>Aruba AP-518 (EG) TAA 802.11ax 2x2:2/4x4:4 Dual Radio 6xRPSMA Connectorized Indoor Hardened AP</td>
</tr>
<tr>
<td>R4H05A</td>
<td>Aruba AP-518 (IL) TAA 802.11ax 2x2:2/4x4:4 Dual Radio 6xRPSMA Connectorized Indoor Hardened AP</td>
</tr>
<tr>
<td>R4H06A</td>
<td>Aruba AP-518 (JP) TAA 802.11ax 2x2:2/4x4:4 Dual Radio 6xRPSMA Connectorized Indoor Hardened AP</td>
</tr>
<tr>
<td>R4H07A</td>
<td>Aruba AP-518 (RW) TAA 802.11ax 2x2:2/4x4:4 Dual Radio 6xRPSMA Connectorized Indoor Hardened AP</td>
</tr>
<tr>
<td>R4H08A</td>
<td>Aruba AP-518 (US) TAA 802.11ax 2x2:2/4x4:4 Dual Radio 6xRPSMA Connectorized Indoor Hardened AP</td>
</tr>
</tbody>
</table>

Refer to the [ordering guide](#) for more information.