WI-FI 6 (802.11AX) USES THE SAME 5GHZ AND 2.4GHZ CHANNELS AS 802.11N/AC

Wi-Fi 6 supports channel widths of 20, 40, 80 and 160 MHz in the 5GHz band. Wi-Fi OFDMA allows for a more efficient use of the spectrum, 20/40/80MHz channelization are recommended for enterprise deployments, while 160MHz is best-suited for environments with low channel utilization. In the 2.4GHz band, 20 and 40 MHz channel widths are supported, but 20 MHz is recommended.

INCREASED DATA RATES

Wi-Fi 6 delivers significantly higher peak data rates than Wi-Fi 5 (802.11ac) in 5GHz and 802.11n in 2.4GHz. Note that support for 8SS was not widely adopted with Wi-Fi 5, but is expected to be more common with Wi-Fi 6.

MODULATION & NET BIT RATE (PER STREAM)

<table>
<thead>
<tr>
<th>MCS INDEX</th>
<th>MODULATION</th>
<th>CODING</th>
<th>2.0 MHz</th>
<th>4.1 MHz</th>
<th>8.3 MHz</th>
<th>16.6 MHz</th>
<th>17.6 MHz</th>
<th>38.7 MHz</th>
<th>77.8 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>BPSK</td>
<td>1/2</td>
<td>0.9</td>
<td>1.8</td>
<td>3.8</td>
<td>8.6</td>
<td>17.2</td>
<td>36.0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>QPSK</td>
<td>1/2</td>
<td>1.8</td>
<td>3.5</td>
<td>7.5</td>
<td>17.2</td>
<td>34.4</td>
<td>72.1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>QPSK</td>
<td>3/4</td>
<td>2.6</td>
<td>5.3</td>
<td>11.3</td>
<td>25.8</td>
<td>51.6</td>
<td>108.1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>16-QAM</td>
<td>1/2</td>
<td>3.5</td>
<td>7.1</td>
<td>15.0</td>
<td>34.4</td>
<td>68.8</td>
<td>144.1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>16-QAM</td>
<td>3/4</td>
<td>5.3</td>
<td>10.6</td>
<td>22.5</td>
<td>51.6</td>
<td>103.2</td>
<td>212.6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>64-QAM</td>
<td>2/3</td>
<td>7.1</td>
<td>14.1</td>
<td>30.0</td>
<td>68.8</td>
<td>137.6</td>
<td>288.2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>64-QAM</td>
<td>3/4</td>
<td>7.9</td>
<td>15.9</td>
<td>33.8</td>
<td>77.4</td>
<td>154.9</td>
<td>324.3</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>64-QAM</td>
<td>5/6</td>
<td>8.8</td>
<td>17.6</td>
<td>37.5</td>
<td>86.0</td>
<td>172.1</td>
<td>360.3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>256-QAM</td>
<td>3/4</td>
<td>14.6</td>
<td>29.4</td>
<td>62.5</td>
<td>134.3</td>
<td>286.8</td>
<td>600.4</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>256-QAM</td>
<td>5/6</td>
<td>11.8</td>
<td>23.5</td>
<td>50.0</td>
<td>114.7</td>
<td>229.4</td>
<td>480.4</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1024-QAM</td>
<td>3/4</td>
<td>13.2</td>
<td>26.5</td>
<td>56.3</td>
<td>129.0</td>
<td>258.1</td>
<td>540.4</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1024-QAM</td>
<td>5/6</td>
<td>14.7</td>
<td>29.4</td>
<td>62.5</td>
<td>134.3</td>
<td>286.8</td>
<td>600.4</td>
<td></td>
</tr>
</tbody>
</table>

* Data rate may vary depending on client availability.

INCREASE IN DATA RATE WITH 1024 QAM

Wi-Fi 6 has 1024 QAM modulation. Each OFDM symbol represents 10 bits of data vs 8 for 256QAM in Wi-Fi 5, which is a 25% increase in bits per symbol which translates to a 25% decrease in error margin.

WI-FI 6 (802.11AX) PHYSICAL LAYER FRAME FORMAT

<table>
<thead>
<tr>
<th>8µs</th>
<th>8µs</th>
<th>4µs</th>
<th>4µs</th>
<th>4µs</th>
<th>4µs</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-STF</td>
<td>L-LTF</td>
<td>L-SIG</td>
<td>RL-SIG</td>
<td>HE-SIG-A</td>
<td>HE-STF</td>
</tr>
</tbody>
</table>

HE MU PPDU FORMAT

<table>
<thead>
<tr>
<th>8µs</th>
<th>8µs</th>
<th>4µs</th>
<th>4µs</th>
<th>4µs</th>
<th>4µs</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-STF</td>
<td>L-LTF</td>
<td>L-SIG</td>
<td>RL-SIG</td>
<td>HE-SIG-A</td>
<td>HE-STF</td>
</tr>
</tbody>
</table>

HE SU, EXTENDED RANGE SU, AND TRIGGER-BASED PPDU FORMATS

<table>
<thead>
<tr>
<th>8µs</th>
<th>8µs</th>
<th>4µs</th>
<th>4µs</th>
<th>4µs</th>
<th>4µs</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-STF</td>
<td>L-LTF</td>
<td>L-SIG</td>
<td>RL-SIG</td>
<td>HE-SIG-A</td>
<td>HE-STF</td>
</tr>
</tbody>
</table>

SUPERB PERFORMANCE - EVEN IN CROWDED AREAS

5GHz Channel Allocation (North America)

- **Wi-Fi 6** delivers significantly higher peak data rates than Wi-Fi 5 (802.11ac) in 5GHz and 802.11n in 2.4GHz. Note that support for 8SS was not widely adopted with Wi-Fi 5, but is expected to be more common with Wi-Fi 6.

CHANNEL BANDWIDTH

- **20 MHz 802.11n (2.4 GHz)**
- **20 MHz 802.11ac (5 GHz)**
- **20 MHz 802.11ax (2.4/5 GHz)**
- **40 MHz 802.11n (2.4 GHz)**
- **40 MHz 802.11ac (5 GHz)**
- **40 MHz 802.11ax (2.4/5 GHz)**
- **80 MHz 802.11ac (5 GHz)**
- **80 MHz 802.11ax (5 GHz)**
- **160 MHz 802.11ac (5 GHz)**
- **160 MHz 802.11ax (5 GHz)**

* Data rate may vary depending on client availability.

INCREASE IN DATA RATE WITH 1024 QAM

Wi-Fi 6 has 1024 QAM modulation. Each OFDM symbol represents 10 bits of data vs 8 for 256QAM in Wi-Fi 5, which is a 25% increase in bits per symbol which translates to a 25% decrease in error margin.

AMPLITUDE +1

QUADRATURE +1

AMPLITUDE -1

QUADRATURE -1
HIGHLIGHTS

WI-FI 5
- Multi-User MIMO (downlink)
- 4 Spatial Streams (4SS)
- 20/40/80/160 MHz channel
- 256-QAM modulation and coding
- Explicit transmit beamforming

WI-FI 6
- 4x Average throughput per station in 2.4 & 5 GHz bands
- Multi-User MIMO (uplink and downlink)
- OFDMA uplink and downlink
- Higher rates (1024-QAM)
- Wait to Wake (Target Wake Time)
- Enhanced outdoor long-range performance

ENHANCED USER EXPERIENCE

ORTHOGONAL FREQUENCY DIVISION MULTIPLE ACCESS (OFDMA)

OFDMA improves transmission efficiency in high density environments and where short packets are transmitted by combining users. The resulting benefit is a 4x improvement in average throughput per client in a dense deployment scenario as well as efficiently serving IoT type devices with standard enterprise clients.

INCREASE NETWORK CAPACITY WITH BSS COLORING

New channel access behavior is introduced in WI-FI 6 by assigning a different "color" per BSS and allowing more simultaneous transmissions in same channels with different BSS colors. The resulting benefit is greater frequency reuse between BSS's with increase in network capacity.

UPLINK ENHANCEMENTS

802.11ac introduced downlink MU-MIMO from AP to multiple users to improve downlink efficiency. 802.11ax enhances uplink transmission efficiency from multiple clients to AP in both OFDMA and MU-MIMO. The resulting benefit is faster uplink response times experienced by clients, which is required given that most traffic patterns now are symmetrical in nature.

POWER SAVING ENHANCEMENTS

Mechanisms such as Target Wake Time (TWT) negotiated between a client and an AP, Broadcast TWT for clients that have not negotiated pre-scheduled wake times, aggressively focus on improved power efficiency for stations. The resulting benefit is extended battery performance for client devices.