Aislelabs Flow Integration With Aruba Networks Wi-Fi Infrastructure

Using Aruba’s Analytics & Location Engine For Anonymous Wi-Fi Location Analytics
Introduction
Aislelabs provides a comprehensive location-based technology platform for physical venues and stores. Aislelabs’ cloud based product suite enables an end-to-end solution for enterprise users utilizing Wi-Fi and Bluetooth technology. Aislelabs Flow product for advanced in-store location analytics can be implemented using the existing Aruba Wi-Fi infrastructure. This document details integration with Aruba ALE (Analytics & Location Engine).

ALE Service
Aruba’s Analytics & Location Engine (ALE) service can be enabled to send Wi-Fi location data to the Aislelabs’ cloud platform for further analysis. The data consists entirely of anonymous and non-personal information – MAC address and location. No other information is collected or transmitted.

Prerequisites
Following Aruba components are needed:

- AirWave Management Suite for floor maps and infrastructure monitoring
- Mobility Controller and Access Points (APs) or Aruba Instant Access Points (IAPs)
- ALE Server to process location information received from the Mobility Controller

All Aruba controllers, APs and IAPs should be deployed and functional before configuring ALE. It is recommended that the same subnet be used for both AirWave and ALE so they can communicate seamlessly with the controllers, APs and IAPs.
Configuring AirWave and ALE

First setup all the APs and controllers by importing them in the AirWave configuration dashboard. They will be plotted using Visual RF on the floor map.

If using a Mobility Controller enter a customized "community string" for the controller to send data to AirWave. If using IAPs, follow the instructions in this guide to make sure they show up: http://community.arubanetworks.com/aruba/attachments/aruba/unified-wired-wireless-access/21314/1/Aruba%20Instant%20and%20AirWave.pdf
Next enable the RTLS collector in AirWave
Set-up VisualRF in AirWave. Create all the necessary geo-fences and place the APs and IAPs at the correct locations. The completed floor plan should look like this: the screenshot below.
Inside ALE, set-up communication to AirWave and the Mobility Controller by entering the IP of the AirWave server and the Controller. Also, start RTLS on ALE: ALE will act as a RTLS server taking RTLS data from the controller and AirWave. If you are running IAPs, set RTLS following this guide: http://www.arubanetworks.com/techdocs/Instant_40_Mobile/Advanced/Content/UG_files/RTLS_conf/ConfProc.htm

Assuming everything is correctly configured within 15 minutes the ALE dashboard should look like the screenshot below. The "Number of Location Computer" should be greater than zero. If this number stays at zero, check that Configuration -> Enable Geo Fence is enabled.
Make sure the firewall inside the ALE virtual machine allows data to TCP port 7999. This can be done by logging in and changing the IP tables.
Lastly, export the floor plans as an archive and send it to Aislelabs.

Firewall and VPN
You may need to make changes to the firewall or VPN to get data from the ALE. This can be done by either white-listing the IP address or creating a secure site-to-site VPN tunnel. Provide details of your network firewall and supported tunnel parameters to your Aislelabs’ technical contact to initiate the connection.

Questions & Assistance
For technical assistance please contact us at the address listed below:

aislelabs
326 Adelaide St W, #201
Toronto, ON, M5V 1R3
Phone +1-647-557-3510
FAX +1-647-557-3511
support@aislelabs.com